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FIG. 2. Typical equilibrium stress-strain curve. Also 
shown is the Rayleigh line <R for a wave taking the mate­
rial from the state (0-0. EO) to the state (0-1. (01). The dashed 
lines represent the behavior of an ideal locking material. 

In these coordinates Eq. (1) takes the form 

and Eq. (2) becomes ' 

a, + Po(UTT - 2VUT , + V'lUu ) =0 (5) 

In a steady wave propagating at the velocity V the 
field variables depend on ~ alone, so all T deriva­
tives vanish. Equation (4) then takes the form 
E=-dU/d~, E=VcJ2U/de, andu=-VdU/d~, leading 
to the important relations 

E = - V:~ and u= VE, (6) 

and Eq. (5) becomes d(a-poV'lE)/d~=O. This latter 
equation is readily integrated to give a - Po V'lE 
= const. If the material is in a state 0'0; Eo at some 
point of the wave (actually we will assume this to be 
the case as ~ - 00), the constant can be evaluated and 
we have 

(7) 

Since the second equation of (6) holds everywhere in 
the wave, it implies that u o= Veo and hence that 

(8) 

where Uo is the particle velOCity of the material in 
the state (0'0' Eo). Equations (7) and (8) together give 

po(u-uo)V-(a-ao)=O, (9a) 

(E-Eo)V-(u-uo)=O . (9b) 

These formulas are of the same form as the Ran­
kine-Hugoniot shock equations. In particular, if u, E, 

and a in Eqs. (9) are assigned the values of these 
quantities behind the wave, then the two pairs of 
equations are identical when uo, Eo, and 0'0 refer to 
values of the unsubscripted variables ahead of the 
wave. This shows that any steady-wave experiment 
can be interpreted as a shock experiment if only 
equilibrium states behind the. wave are of interest. 
As we shall see, the steady-wave analysis gives the 
complete wave profile. From Eq. (7) we see that 
the (a, E) path followed by a particle during the pas­
sage of a steady wave is the straight line, called 

the Rayleigh line <R, connecting the initial and final 
states in the (a,E) plane, and the wave speed is 
determined from the slope of this line: 

(10) 

In order that any existing steady-wave solutions be 
of practical interest, thev must be stable and should 
also be unique. The heuristic discussion in Sec. I 
suggests that steady waves will be stable, and dem­
onstrations of this stability in certain cases, as well 
as approximate solutions to wave evolution problems, 
have been given by Lighthilll6 and Bland. l9 One of 
the simpler theories to be discussed in this paper 
results in the equation f(U x)U xx + vU XIX= Utt which 
has been studied rather extensively in a recent 
series of papers20

-
22 in which the existence, unique­

ness, and stability of steady-wave solutions are 
discussed. . 

The properties of steady waves discussed above, 
in addition to their simplicity, suggest their use in 
the experimental determination of constitutive equa­
tions. Unfortunately, as is apparent from the fact 
that each member of a broad class of disturbances 
evolves to the same steady wave, all information 
bearing on the evolutionary process is lost and one 
cannot expect steady-wave measurements alone to 
determine a constitutive equation uniquely. For this 
reason we must select a general class of constitutive 
equations as a starting point, and then demonstrate 
its applicability to the problem at hand. This is done 
in Secs. ill-V. 

Ill. CONSTITUTIVE EQUATIONS 

As a starting point for the selection of a constitutive 
equation we note that experiments conducted on a 
variety of porous materials show that, for any given 
material, the states achieved as a result of dynamic 
compaction lie on a single, unique stress-strain 
curve u= aE(e) that is independent of the rate at which 
the compaction occurred. This observation suggests 
our first basic constitutive assumption: When the 
strain rate becomes zero at the end of a compaction 
process, the existing stress is a function of the 
strain, 0'= a E(E). We call this functional relationship 
an equilibrium stress-strain curve. These curves 
have been measured for a variety of materials, and 
several mathematical representations for them have 
been advanced. The most recent and complete theory 
of these curves known to us is that of Herrmann. 4 

The experiments that generate the equilibrium 
curves also show that, while a theory in which the 
stress is assumed to be a function solely of strain 
can predict the result of a compaction process 
correctly, it fails to provide an adequate description 
of the process itself: The fact that waves induced by 
planar impact do not propagate as centered simple 
waves, velocity discontinuities, or combmations 
thereof is the most typical indication of this failure, 
In order to obtain a theory capable of describing the 
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FIG. 3. Steady waveforms of various amplitudes in a ma­
terial collapsing according to Eq. (20). We have taken 
,82 = 10. 

compaction process we generalize the rate-indepen­
dent theory associated with the constitutive equation 
CJ= CJE(e) by the inclusion of an additional contribution 
to the stress that is dependent on the rate of strain­
ing. This generalization is based on the discussion 
in the report of Johnsonll and the paper of Butcher, 12 

but focuses on the exploration of collapse phenomena 
while ignoring some of the range of effects covered 
in these articles. 

Both Johnson and Butcher found it convenient to 
separate their thinking about material response into 
two parts dealing with the configuration of the mate­
rial when loaded but in equilibrium (i. e., when the 
strain rate is zero) and the strain rate during col­
lapse under applied load, respectively. While this 
has led to an unusual representation for a constitu­
tive equation that is actually quite conventional, we 
have found the breakdown to be of great practical 
value and have continued to use it. The configuration 
of a body in equilibrium is, of course, obtained from 
the equilibrium stress-strain curve. The strain rate 
during a compaction process must be obtained from 
the complete rate-dependent constitutive equation. 
Since this equation is framed in a form inverted for 
strain rate, it is described as a "collapse rule". 
In the following we will show that the theory ob­
tained in this way can be expressed in the conven­
tional23 form CJ=CJE(e)+ljI(e,E), where ljI(e,O)=O. 

The specific problem motivating this study lies in 
the calculations of Butcher which, while including 
a number of effects not included in this work and 
employing a very precise representation of the 
equilibrium stress-strain curve, fail to provide an 
adequate description of the observed steady-wave 
profiles in the material studied. The shortcomings 
seem traceable to. the use of an oversimplified 

collapse rule [Eq. (1.19) of Ref. 12]. In this paper 
we generalize the linear collapse rule employed by 
Butcher in a way that seems plausible, fits conve­
niently into the conventional framework for contin­
uum mechaniCS, and enables it to accommodate 
all steady-wave observations exactly . 

A. Equilibrium Stress-Strain Curves 

As noted previously, the determination of equilib­
rium stress-strain curves has been the object of 
many investigations over the past decade. The pre­
sent work is built on this foundation and the equilib­
rium stress-strain curves called for in this paper 
are just those that have been determined before. 
Since these curves have fairly elaborate mathemat­
ical representations [often compounded by their 
expression in the form e=!(CJ)], or exist only in 
graphical or tabular form, calculations using them 
are done by numerical means. 

In all cases we have assumed that the equilibrium 
response of the material is described by a stress­
strain curve that is concave toward the stress axis. 
For materials exhibiting a yield behavior, this 
requirement will be met only if the analysis is 
restricted to the range of states above some stress 
CJo> O. Compaction waves propagating in a material 
having a yield point are unstable and separate into a 
low-amplitude precursor followed by the slower­
propagating main compaction wave. When we take 
the stress CJo to be the precursor amplitude, then the 
present analysis is applicable to the description of 
the main compaction wave. 

In order to accomplish the parameter studies of 
Sec. IV, it is convenient to have at hand a mathe­
matical representation of the equilibrium stress­
strain curve that, in addition to providing a reason­
able approximation to real-material behavior at low 
strains, (a) is simple enough to allow analytical 
calculation of steady-wave forms for a variety of 
collapse rules, (b) involves a single dimensionless 
parameter that measures the departure from linear­
ity, and (c) does not contribute to asymmetry of 
calculated steady waveforms. The function 

(11) 

fulfills these requirements; it apprOximates the 
observed behavior at low strains where dispersion 
effects are important and involves the parameter (3 

characterizing the nonlinearity. It also eliminates 
the equilibrium behavior as a contributor to asym­
metry of waveforms, but a discussion of what this 
means and a demonstration that it is accomplished 
must be postpone until Sec. IV. The extreme 
example of nonlinear equilibrium response is pro­
vided by the locking model represented by the 
dashed lines on Fig. 2 and discussed at the end of 
Sec. IV. The specific forms of the stress-strain 
curve given by Eq. (11) or by the locking model are 
not, of course, central features of the theory; they 


